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Basic Concepts and Notation 
 

U - population = finite set of units (elements) 

e.g., all individuals aged 16+ in Israel. 
 

U = {1,....,N}  ;  N = population size  

Variables Y, X,… taking values ,i iy x , … 

                                                     

Finite (Summary) population parameters 

 

e.g., Total: iU
Y y ; mean: 1

iU
Y N y   

Regression coefficient, 
2

( )

( )

i iU

iU

x x y
B

x x









,… 

„Superpopulation‟ model,  

e.g.,   y i ~ N(,
2
); Parameters of interest, 

2,    
 

Estimation of Y, Y , B  Descriptive  
 

Estimation of 
2,    Analytic 
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       Basic Concepts and notation (cont.) 

 

S = sample – subset of population for which 

                      we collect data. 
 

sampling design – method of selecting the 

sample. 
 

sample size – n (may be fixed or random). 

 

data - , ,...;i iy x i s  (if no non-response) 

 

estimator – function of data 

e.g.,  
1

is
y n y  , 

estimates 1

iU
Y N y   and ( )iE y  . 

If sample selected with equal probabilities. 
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Examples of Sampling Designs 

 

1- Simple random sampling without 

  replacement (SRSWOR) 

 

Each subset of size n has equal probability of 

forming the sample ( each subset of size 

m n  has equal probability of being in the 

sample).  
 

2- Stratified sampling 

 

Population partitioned into strata, h=1,...,L, 

e.g., regions of country. 
 

Select samples independently within each 

stratum (for example by SRSWOR) 
 

 improves precision if Y is homogeneous 

      within strata, 
 

 Permits over-sampling domains of interest, 
 

 Permits estimation of strata parameters, 

 Permits efficient sample allocations. 
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3- (Single stage) Cluster Sampling 

Population partitioned into (natural) 

clusters, e.g. areas, households ,…  

Select sample of clusters, select all units within 

the selected clusters. 
 

 Loss in efficiency, big saves in costs 

 

4. Multistage Cluster Sampling 
 

Primary sampling units (PSUs) 

Secondary sampling units (SSUs) 
 

Select sample of PSUs; select sample of SSUs 

within each selected PSU 
 

 Often necessary if frame is hierarchical, 
 

 Interview workloads reduced if, for  

      example, PSUs are areas, 
 

  Does not require list of SSUs. 
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4- Probability Proportional to Size (PPS) 

Sampling 
 

Suppose there exist M PSU’s. Measure of size 

of PSU g is 
gM . Select PSUs such that, 

Pr( )g s  Mg . 

e.g. Household surveys 

PSUs defined by household. 

Pr(select PSU g) = n / .gM M  (n number of 

selected households).  

 

SSUs defined by members within households  

Mg = number of members in PSU g . 

Pr (select member i in selected PSU g) = 
gM

gm
. 

  

Pr [select member ( )i, g ] =
g g g

g

nM m nm

M M M
  

Constant if gm = m .  
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General Estimation Theory (Design-Based) 
 

Parameter  (function of y1, ..., yN), e.g., Y    

Estimator ˆ  (function of yi, i  s);   
ˆ  ˆ (s) 

e.g., ˆ
sy  . 

 

s = source of random variation (different 

samplesdifferent estimates. Population 

values considered as fixed numbers). 

p(s) = probability of selecting s 

S = set of all possible samples s 

 
ˆ ˆ( ) ( ) ( )D s

E s p s   ; D-bias = [ED( ˆ ) - ]. 

 
2ˆ ˆ ˆ( ) ( )[ ( ) ( )]D Ds

Var p s s E    . 

 

Standard error = s.e.( ˆ ) = ˆ( )DVar  . 
 

Central limit theorem,  

ˆ( )s ~
n

N [ED( ˆ ), VarD( ˆ )]. 
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Bias from Ignoring Sampling Design 
 

Suppose we ignore the sampling design and 

wish to estimate population expectation 

iE(y )   by sample mean 
  
y s  n

1
y is . 

 

Suppose n is fixed under the sampling design.  
 

Let Ii = 1 if unit i sampled and Ii = 0 if not. 
 

Pr(unit i sampled) = 
i
π = inclusion probability.  

 

It follows that,  

( ) ( | 1) /s i i i iU U
E y E y I    . 

=  μ  if  E(yi | Ii = 1) (unbiased).  

But Biased if E(yi | Ii = 1) ≠ E(yi) = μ  

Informative sampling - 
i
π  related to 

i
y . 
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Example – Stratified Sampling (2 strata) 

 

SRS of size hn  within stratum h of size Nh 

 

   i = 
  

nh

Nh

  for every i in stratum h. 

 

Population mean   = 
  

N11  N22

N1  N2

. 

 

21

2211

21

2211 )(
nn

nn
yE

nn

ynyn
y ss












 

 

Generally biased unless 1 = 2= or  

1 1 2 2/ /n N n N  (EPSEM). 
 

Proportional sample allocation. 
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Weighting for unequal selection probabilities 

 

Define sample weight for unit i as,  

 
1-

i iw = π   (expansion weight, base weight). 

 

Horvitz-Thompson estimator of  iU
yt  is   

ĤT i is
t w y . 

 

For given population values, 

 
1

ˆ( )D HT i i iU U
i

E t y y


    D-unbiased  
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Weighting for Nonresponse 
 

Respondents = R= subset of sample s 

 

r|iπ   = Pr (unit i responds | i sampled) 

 

We would like to set, 
 

1-

r|i r|iw = π  (conditional response weight) 

1-

i iw = π   (base weight) 

 

Combined response weight:  

i r|i iw = w w  =
  

1

Pr observedi
   

  “2-stage sampling”.  

But 
r|iπ  usually unknown. 
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Sample-based nonresponse weights 

 

Suppose both respondents and nonrespondents 

can be divided into H weighting classes, 

e.g., areas or socio demographic groups. 
 

For unit i  in class h, 
 

number of respondents in class h

number of sampled units in clas h
ˆ

s 
i|hπ  

Bias eliminated if response probability is 

indeed the same for all the units within the 

same weighting class (noninformative 

nonresponse within classes). 
 

 Modelling the response probabilities very 

difficult in practice. Depends on what is 

known about the response mechanism. 
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Calibration 
 

When population totals 1,..., KX X X  are 

known for measured values 1 ...i i Kix x x , we 

may want to change the sampling weights such 

that the estimates are calibrated to these totals, 

i.e., change iw  to *

iw  such that 
 *

i ii s
w x = X . 

 

Estimate total Y as ˆ
 *

Cal i ii s
Y = w y . 

Perfect if 1 1 ...i i k Kiy A x A x   (linear).  

The new weights *

iw  are chosen such that they 

are close to the original weights iw  by some 

distance function, e.g., minimize, 
 

 
* 2( )i i

i s
i

w w

w


  subject to *

i ii s
w x X


 . 

  

 

 Calibration often used to adjust nonresponse. 
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Weighting in Regression 
 

Denote 
i

y  value of the dependent variable, 

             
i

x  values of explanatory variables, 

OLS estimator:   

         
1ˆ ( )OLS X X X y    

1

i i i is s
x x x y



  . 

Sample-weighted (probability weighted) est.: 

 
1

ˆ
w i i i i i is s

w x x w x y


    

 

wi = sampling weight.  
 

   
1

ˆ t

w i i i iU U
E x x x y B



  D  (census est.) 

 

The expectation is over repeated sampling. 

(True under any population model). 
 

If population model is,  

 , | 0i i i i iy x e E e x  M  

where EM denotes expectation under model, 
 

  EMED
  
ˆ w  ,  

 

 ˆ
wβ  consistent for β  (under correct model). 
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Why weight?  

 

Robustness against Model Misspecification 
 

ˆ
wβ  is design consistent for B (census estimate) 

 

B is well-defined population parameter even if  

the model is misspecified. 

B minimises  
2

t

i iy - x βU
,  

Defines the best fitting linear regression 

function in finite population. 
 

ˆ
wβ  minimizes  

2
t

i i ii s
w y x 


 , which is 

design unbiased for  
2

t

i iy - x βU
. 

 

   
2

[ ]t

i i ii s
E w y x 


 D

  
2

t

i iy - x βU
. 
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Example 
 

Suppose that the wage pay-off to education is 

lower for women than for men and that the 

sampling design oversamples women.  

Correct model 
 

0 1 2 3[ ]i i i i i iy Ed S Ed S e          

where ;if i woman if i man i iS = 1 S = 0 . 
 

Note: 3[ ]i iEd S   accounts for difference in 

coefficient of education 
 

Misspecified model, 
*

0 1 2i i i iy Ed S e       
 

The unweighted est. 
1,

ˆ
OLS  underestimates the 

strength of relationship between wages and 

education in the population. (women are 

oversampled). 
 

The weighted est. 1,
ˆ

W  estimates the average 

increase in hourly wage per year of 

education in the population under study. 
 

 The misspecified model tells nothing about 

the different wage-education relationships in 

the two groups or about other populations. 
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Weighting: Pros and Cons 
 

Pros  
 

  Simple adjustment for informative sampling. 
     

  Possible advantage of robustness. 
 

  Guarantees use of correct variance estimator. 
 

 Consistent with general practice. 
 

Cons  

  Complicates standard model fitting.  
 

 Does not permit conditioning on selected 

    sample (observed x‟s).              
 

 Distribution of weighted estimators  

    generally unknown. 
 

  May inflate variance, e.g., 

 t 2

i i i i iy = x β+e ,var e =σ ,   
ˆ w  Best if    i i

2
 

(GLS). 
 

If not, loss of efficiency under ignorable sampling. 
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Comparing Weighted and Unweighted Est.  

 

 May detect model misspecification 
 

 permits detection of sample selection bias 

(informative sampling) 
 

If no model misspecification, and sampling 

scheme is ignorable then  
 

ˆ ˆ: ( ) ( )wE E 0H  holds 

 

Testing of H0 can be implemented by a variety 

of methods. 
 

 Treat as diagnostic test – if H0 rejected may 

either signifies model misspecification or 

informative sampling.  
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Example: National Maternal and Infant    

           Health (NMIH) Survey, U.S.A.  
 

Disproportionate stratified random sample of 

Vital Records. Strata defined by mother’s race 

(„black‟, „white‟) and child’s birth weight; 
 

y < 1500, 1500 y < 2500, y 2500   
 

Simulation study: Consider the sample data as 

‘population’, select independent samples with 

probabilities proportional to original selection 

probabilities. For each sample estimate the 

regression of birth weight (measured in grams) 

on 1st, 2nd and 3rd powers of gestational age 

(measured in weeks).  
 

The ‘population model’ (fitted by OLS) is, 
 

2 3

i i i i iy = 17866 -1827.7x + 61.2x - 0.61x + e . 
 

All the coefficients are highly significant, 

2 2

eR = 0.61, σ = 603.2. =) .30( 0ˆ
i i

Corr w ,e . 

                                                  

                                Informative sampling. 
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Results: Means and Standard Deviations 

(SD) of Means of Regression Estimates over 

100 samples Selected from NMIH Data. 
 

‘Pop.’ size =9447, Av. Sample size=233.6. 
 

                                Method 
 

True Coeff. 

SD Bet. Est. 
OLS PW MLE S-P 

 

0β =17886 

0SD(β )ˆ  

13625.2 

453.9 

19035.7 

810.6 

17630.8 

721.7 

17556.3 

733.3 

 

1β = -1827.7 

1SD(β )ˆ  

-1382.8 

45.8 

-1952.7 

76.4 

-1813.7 

68.6 

-1809.5 

69.0 

 

2β = 61.2 

2SD(β )ˆ  

45.90 

1.5 

65.50 

2.4 

60.21 

2.1 

61.07 

2.1 

 

3β = -0.61 

3SD(β )ˆ  

-0.45 

0.02 

-0.66 

0.02 

-0.60 

0.02 

-0.62 

0.02 
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 אומדנים ורווחי סמך, אמתיים מקדמים
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 (המשך) אומדנים ורווחי סמך, אמתיים מקדמים

 

 

 
 

 
 

 

 

 ודה על ההקשבה. סליחה על הנוסחאות.ת


