

כנס ״מאין באנו ולאן הגענו״ סקר ארוך טווח של הלמ״ס 2018 בינואר 31

חשיבות השימוש במקדמי ניפוח במחקר מבוסס סקרים

פרופ׳ דני פפרמן הסטטיסטיקן הלאומי

Basic Concepts and Notation

U - population = *finite* set of units (elements)
e.g., all individuals aged 16+ in Israel.

 $U = \{1,...,N\}$; N = population size

Variables Y, X,... taking values $y_i, x_i, ...$

Finite (Summary) population parameters

e.g., Total:
$$Y = \sum_{U} y_i$$
; mean: $\overline{Y} = N^{-1} \sum_{U} y_i$

Regression coefficient, $B = \frac{\sum_{U} (x_i - \overline{x}) y_i}{\sum_{U} (x_i - \overline{x})^2}, \dots$

'Superpopulation' model,

e.g., $y_i \sim N(\mu, \sigma^2)$; Parameters of interest, μ, σ^2 Estimation of $Y, \overline{Y}, B \rightarrow$ Descriptive Estimation of $\mu, \sigma^2 \rightarrow$ Analytic

Basic Concepts and notation (cont.)

S = sample - subset of population for which we collect data.

sampling design – method of selecting the sample.

sample size – *n* (may be fixed or random).

data - $y_i, x_i, ...; i \in s$ (**if** no **non-response**)

estimator – function of data

e.g., $\overline{y} = n^{-1} \sum_{s} y_{i}$, estimates $\overline{Y} = N^{-1} \sum_{U} y_{i}$ and $\mu = E(y_{i})$.

If sample selected with equal probabilities.

Examples of Sampling Designs

1- Simple random sampling without replacement (SRSWOR)

Each subset of size *n* has equal probability of forming the sample (\Rightarrow each subset of size $m \le n$ has equal probability of being in the sample).

2- Stratified sampling

Population partitioned into strata, *h*=1,...,*L*, e.g., regions of country.

Select samples independently within each stratum (for example by **SRSWOR**)

- improves precision if Y is homogeneous within strata,
- > Permits **over-sampling** domains of interest,
- > Permits estimation of strata parameters,
- > Permits efficient sample allocations.

3- (Single stage) Cluster Sampling

Population partitioned into (**natural**) clusters, **e.g.** *areas*, **households**,...

Select sample of clusters, select all units within the selected clusters.

Loss in efficiency, big saves in costs

4. Multistage Cluster Sampling

Primary sampling units (**PSUs**)

Secondary sampling units (SSUs)

Select sample of PSUs; select sample of SSUs within each selected PSU

- > Often necessary if frame is hierarchical,
- Interview workloads reduced if, for example, PSUs are areas,
- Does not require list of SSUs.

4- Probability Proportional to Size (PPS) Sampling

Suppose there exist *M* PSU's. Measure of size

of PSU g is M_g . Select PSUs such that,

 $\Pr(g \in s) \propto M_g$.

e.g. Household surveys

PSUs defined by household.

Pr(select PSU g) = nM_g / M . (*n* number of selected households).

SSUs defined by **members within households** M_g = number of *members* in PSU **g**.

Pr (select *member i* in selected PSU g) = $\frac{m_g}{M_g}$.

↓

Pr [select member (i, g)] = $\frac{nM_g}{M} \times \frac{m_g}{M_g} = \frac{nm_g}{M}$ Constant if $m_g = m$. **General Estimation Theory (Design-Based)**

Parameter θ (function of $\mathbf{y_1}, \dots, \mathbf{y_N}$), e.g., $\theta = \overline{Y}$ **Estimator** $\hat{\theta}$ (function of $\mathbf{y_i}, \mathbf{i} \in \mathbf{s}$); $\hat{\theta} = \hat{\theta}(\mathbf{s})$ e.g., $\hat{\theta} = \overline{y_s}$.

s = source of random variation (different $samples <math>\Rightarrow$ different estimates. Population values considered as fixed numbers). p(s) = probability of selecting sS = set of all possible samples s

$$E_D(\hat{\theta}) = \sum_s \hat{\theta}(s) p(s) ; \mathbf{D}\text{-bias} = [E_D(\hat{\theta}) - \theta].$$

$$Var_D(\hat{\theta}) = \sum_{s} p(s) [\hat{\theta}(s) - E_D(\hat{\theta})]^2.$$

Standard error = s.e.
$$(\hat{\theta}) = \sqrt{Var_D(\hat{\theta})}$$
.

Central limit theorem,

$$\hat{\theta}(s) \sim \mathbb{N} [E_D(\hat{\theta}), Var_D(\hat{\theta})].$$

Bias from Ignoring Sampling Design

Suppose we ignore the sampling design and wish to estimate population **expectation** $\mu = E(y_i)$ by sample mean $\overline{y}_s = n^{-1} \sum_s y_i$. Suppose *n* is **fixed** under the sampling design. Let $I_i = 1$ if unit *i* sampled and $I_i = 0$ if not. *Pr*(unit *i* sampled) = π_i = inclusion probability. It follows that,

$$E(\overline{y}_s) = \sum_U \pi_i E(y_i \mid I_i = 1) / \sum_U \pi_i.$$

= μ if $E(y_i | I_i = 1)$ (unbiased).

But Biased if $E(y_i | I_i = 1) \neq E(y_i) = \mu$.

Informative sampling - π_i related to y_i .

Example – Stratified Sampling (2 strata)

SRS of size n_h within stratum h of size N_h

$$\pi_i = \frac{n_h}{N_h}$$
 for every *i* in stratum *h*.

Population mean $\mu = \frac{N_1\mu_1 + N_2\mu_2}{N_1 + N_2}.$

$$\overline{y}_s = \frac{n_1 \overline{y}_1 + n_2 \overline{y}_2}{n_1 + n_2} \Longrightarrow E(\overline{y}_s) = \frac{n_1 \mu_1 + n_2 \mu_2}{n_1 + n_2}$$

Generally **biased** unless $\mu_1 = \mu_2 = \mu$, or

 $n_1 / N_1 = n_2 / N_2$ (EPSEM).

Proportional sample allocation.

Weighting for unequal selection probabilities

Define **sample weight** for unit *i* as,

 $W_i = \pi_i^{-1}$ (expansion weight, base weight). Horvitz-Thompson estimator of $t = \sum_U y_i$ is $\hat{t}_{HT} = \sum_s w_i y_i$.

For given population values,

$$E_D(\hat{t}_{HT}) = \sum_U \frac{1}{\pi_i} y_i \pi_i = \sum_U y_i \Longrightarrow \mathbf{D}$$
-unbiased

Weighting for Nonresponse

Respondents = **R**= subset of sample **s**

 $\pi_{r/i}$ = Pr (unit *i* responds | *i* sampled)

We would like to set,

 $w_{r/i} = \pi_{r/i}^{-1}$ (conditional response weight) $w_i = \pi_i^{-1}$ (base weight)

Combined response weight:

$$\tilde{w}_i = w_{r/i} w_i = \frac{1}{\Pr(i \text{ observed})} \rightarrow$$

 \rightarrow "2-stage sampling".

But $\pi_{r/i}$ usually **unknown**.

Sample-based nonresponse weights

Suppose both respondents and nonrespondents can be divided into **H weighting classes**, e.g., areas or socio demographic groups.

For unit *i* in class *h*,

 $\hat{\pi}_{i/h} = \frac{\text{number of respondents in class h}}{\text{number of sampled units in class h}}$

Bias eliminated if response probability is indeed the **same** for all the units within the same weighting class (**noninformative nonresponse** within classes).

Modelling the response probabilities very difficult in practice. Depends on what is known about the response mechanism.

Calibration

When population **totals** $X = X_1, ..., X_K$ are **known** for measured values $x_i = x_{1i}...x_{Ki}$, we may want to change the sampling weights such that the estimates are **calibrated** to these totals, **i.e., change** w_i to w_i^* such that $\sum_{i \in s} w_i^* x_i = X$. Estimate total Y as $\hat{Y}_{Cal} = \sum_{i \in s} w_i^* y_i$.

Perfect if $y_i \cong A_1 x_{1i} + \ldots + A_k x_{Ki}$ (linear).

The new weights w_i^* are chosen such that they are close to the original weights w_i by some distance function, **e.g.**, **minimize**,

$$\sum_{i \in s} \frac{(w_i^* - w_i)^2}{w_i} \text{ subject to } \sum_{i \in s} w_i^* x_i = X.$$

> Calibration often used to adjust nonresponse.

Weighting in Regression

Denote $y_i \rightarrow$ value of the dependent variable, $x'_i \rightarrow$ values of explanatory variables,

OLS estimator:

$$\hat{\beta}_{OLS} = (X'X)^{-1}X'y = \left(\sum_{s} x_{i}x_{i}'\right)^{-1}\sum_{s} x_{i}y_{i}.$$

Sample-weighted (*probability weighted*) est.:

$$\hat{\beta}_{w} = \left(\sum_{s} w_{i} x_{i} x_{i}'\right)^{-1} \sum_{s} w_{i} x_{i} y_{i}$$

 w_i = sampling weight.

$$E_{\mathbf{D}}(\hat{\beta}_w) \approx \left(\sum_U x_i x_i^t\right)^{-1} \sum_U x_i y_i = B \text{ (census est.)}$$

The expectation is over repeated sampling. (True under **any** population model).

If **population model** is,

$$y_i = x_i'\beta + e_i, E_M(e_i \mid x_i) = 0$$

where E_M denotes expectation under model,

$$\Rightarrow E_M E_D (\hat{\beta}_w) \approx \beta,$$

• $\hat{\beta}_{w}$ consistent for β (under <u>correct</u> model).

Why weight?

Robustness against Model Misspecification $\hat{\beta}_{w}$ is design consistent for *B* (census estimate) *B* is well-defined *population parameter* even if the model is **misspecified**.

B minimises $\sum_{\boldsymbol{U}} (y_i - x_i^t \beta)^2$, Defines the **best** fitting **linear** regression function in finite population.

 $\hat{\boldsymbol{\beta}}_{w}$ minimizes $\sum_{i \in s} w_{i} (y_{i} - x_{i}^{t} \boldsymbol{\beta})^{2}$, which is design unbiased for $\sum_{\boldsymbol{U}} (y_{i} - x_{i}^{t} \boldsymbol{\beta})^{2}$.

•
$$E_{\mathbf{D}}\left[\sum_{i\in s} w_i \left(y_i - x_i^t \beta\right)^2\right] = \sum_{\mathbf{U}} \left(y_i - x_i^t \beta\right)^2$$
.

Example

Suppose that the wage **pay-off** to **education** is lower for women than for men and that the sampling design **oversamples women**. **Correct model**

 $y_i = \beta_0 + \beta_1 E d_i + \beta_2 S_i + \beta_3 [E d_i \times S_i] + e_i$ where $\mathbf{S_i} = \mathbf{1}$ if i = woman; $\mathbf{S_i} = \mathbf{0}$ if i = man.

Note: $\beta_3[Ed_i \times S_i]$ accounts for **difference** in coefficient of education

Misspecified model, $y_i = \alpha_0 + \alpha_1 E d_i + \alpha_2 S_i + e_i^*$ The *unweighted* est. $\hat{\alpha}_{1,OLS}$ underestimates the strength of relationship between wages and education in the population. (women are oversampled).

The *weighted* est. $\hat{\alpha}_{1,W}$ estimates the average increase in hourly wage per year of education in the population under study.

• The misspecified model **tells nothing** about the **different wage-education relationships** in the two groups or about **other populations.**

Weighting: Pros and Cons

Pros

- Simple adjustment for informative sampling.
- Possible advantage of robustness.
- Guarantees use of correct variance estimator.
- Consistent with general practice.

Cons

- Complicates standard model fitting.
- Does not permit conditioning on selected sample (**observed x's**).
- Distribution of weighted estimators generally unknown.
- May inflate variance, e.g.,

$$y_i = x_i^t \beta + e_i, var(e_i) = \sigma_i^2, \hat{\beta}_w$$
 Best if $\pi_i \propto \sigma_i^2$
(GLS).

If not, loss of efficiency under ignorable sampling.

Comparing Weighted and Unweighted Est.

- May detect model misspecification
- permits detection of sample selection bias (informative sampling)

If no model misspecification, and sampling scheme is ignorable then

$$H_0: E(\hat{\beta}) = E(\hat{\beta}_w)$$
 holds

Testing of H_0 can be implemented by a variety of methods.

• Treat as diagnostic test – if H₀ rejected may either signifies model **misspecification** or **informative** sampling.

Example: National Maternal and Infant Health (NMIH) Survey, U.S.A.

Disproportionate stratified random sample of **Vital Records**. Strata defined by mother's *race* (*'black'*, *'white'*) and child's *birth weight*; $y < 1500, 1500 \le y < 2500, y \ge 2500$

Simulation study: Consider the sample data as '**population**', select independent samples with probabilities proportional to original selection probabilities. For each sample estimate the regression of *birth weight* (measured in **grams**) on **1st**, **2nd** and **3rd** powers of *gestational age* (measured in weeks).

The 'population model' (fitted by OLS) is,

 $y_i = 17866 - 1827.7x_i + 61.2x_i^2 - 0.61x_i^3 + e_i$.

All the coefficients are highly **significant**, $R^2 = 0.61, \sigma_e^2 = 603.2. Corr(w_i, \hat{e}_i) = 0.30.$ \downarrow

Informative sampling.

<u>Results</u>: Means and Standard Deviations (SD) of Means of Regression Estimates over 100 samples Selected from NMIH Data.

'Pop.' size =9447, Av. Sample size=233.6.

True Coeff.	OLS	PW	MLE	S-P
SD Bet. Est.				
$\beta_0 = 17886$	13625.2	19035.7	17630.8	17556.3
$SD(\hat{\boldsymbol{\beta}}_0)$	453.9	810.6	721.7	733.3
$\beta_1 = -1827.7$	-1382.8	-1952.7	-1813.7	-1809.5
$SD(\hat{\beta}_1)$	45.8	76.4	68.6	69.0
$\beta_2 = 61.2$	45.90	65.50	60.21	61.07
$SD(\hat{\beta}_2)$	1.5	2.4	2.1	2.1
$\beta_3 = -0.61$	-0.45	-0.66	-0.60	-0.62
$SD(\hat{\beta}_3)$	0.02	0.02	0.02	0.02

Method

מקדמים אמתיים, אומדנים ורווחי סמך

<u>מקדמים אמתיים, אומדנים ורווחי סמך (המשך)</u>

תודה על ההקשבה. סליחה על הנוסחאות.