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ס באמצעות "מעודדת מחקר המבוסס על נתוני הלמ) ס"הלמ(הלשכה המרכזית לסטטיסטיקה 
והם לא , ס"פרסומי תוצאות מחקרים אלו אינם פרסומים רשמיים של הלמ. חוקרים עצמאיים

הדעות והמסקנות שבאות לידי ביטוי . ס"ל הלמעברו את הביקורת שעוברים פרסומים רשמיים ש
הן של המחברים עצמם ואינן משקפות בהכרח את הדעות , כולל בפרסום זה, בפרסומים אלה

 .כולו או מקצתו טעון אישור מוקדם של המחברים, פרסום מחדש. ס"והמסקנות של הלמ
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יני מורחב'תרגיל ברגרסיות של ג: מ"מי לא משיב לשאלוני סקר הו  
 

 

קצירת  

אשר מבוססת על מדידת פיזור לפי , פרמטרית-מטרת העבודה היא להציג גישה חדשה של רגרסיה אי

הגישה . ומאפשרת לעקוב אחר צורתו של עקום הרגרסיה) Extended Gini (EG)(יני מורחב 'ג

דבר שמאפשר להדגיש , מבוססת על אמידה של סדרה של קירובים ליניאריים לעקום הרגרסיה

ללא שינוי ההתייחסות למשתנים בלתי תלויים , ים לאורך משתנה בלתי תלוי מסויםחלקים שונ

 .אחרים

 גבוה יותר כן v-ככל ש. ν, הגישה מבוססת על שימוש במדדי פיזור התלויים בפרמטר אחד בלבד

ממדד הפיזור גוזרים מקדמי מתאם ומקדם . מודגש במדידת הפיזור החלק התחתון של ההתפלגות

 גישה –עד כמה שידוע לנו . מכל מדד פיזור ניתן ליצור אומדן חלופי לעקום הרגרסיה כך ש–רגרסיה 

זו היא הגישה היחידה המאפשרת לשקלל את שיפועי עקום הרגרסיה על פי תחומים של המשתנה 

 . הבלתי תלוי
באמצעות בחינת דפוסי השינוי . ההבדל בין האומדנים נובע מצורת שקלול של שיפועי עקום הרגרסיה

 . של מקדמי הרגרסיה ניתן לנתח את צורת העקמומיות של עקום הרגרסיה
מוקד . השבה על שאלוני סקר הוצאות משקי הבית-יישום השיטה נעשה על בחינה של דפוסי אי

ההשבה להכנסה של משק הבית וההשפעה של קשר זה על -העניין הוא בבדיקת קיום הקשר בין אי

 . הטיות במדידת אי שוויון בהכנסות
, בנוסף. הניתוח האמפירי מגלה כי שיעור ההשבה עולה עם הגידול בהכנסה ועם גודל משק הבית

ואילו , שיעור ההשבה בקרב האוכלוסייה הערבית גבוה יותר מאשר בקרב האוכלוסייה היהודית

, שני הממצאים האחרונים תקפים. הקהילה החרדית נוטה להשיב פחות מאשר שאר האוכלוסייה

אי התחשבות באי השבה , בגלל שאי ההשבה קטן עם ההכנסה. נסה ובגודל משק הביתללא תלות בהכ

 .     תטה להגדיל את אומדן ההכנסה הממוצעת ולהקטין את אי השוויון בהכנסות במשק
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WHO DOES NOT RESPOND IN THE HOUSEHOLD EXPENDITURE 
SURVEY: AN EXERCISE IN EXTENDED GINI REGRESSIONS 

 

 
 
 

Abstract 

The aim of this paper is to suggest a new, nonparametric regression method, based on 
the Extended Gini (EG) measures of dispersion, which enables the user to follow the 
curvature of the regression curve. The method is capable of estimating a series of 
linear approximations of the regression curve, allowing the investigator to stress 
different sections along the range of one independent variable, while keeping the 
treatment of other independent variables intact. The method is based on the extended 
Gini family, which depends on one parameter, ν. The choice of this parameter enables 
the user to produce infinite alternative estimators of the regression curve. The 
difference between them lies in the weighting schemes applied to the slopes of the 
regression curve. By investigating the patterns of changes in those regression 
coefficients, the curvature of the regression curve can be traced. 
As an application, we investigate nonresponse patterns in the survey of household 
expenditures in Israel. We will mainly be interested in whether nonresponse increases 
or decreases with income, and the kind of functional relationship one can find 
between income and nonresponse.  
The empirical illustration shows that the higher the income, the larger the response 
rate, and the larger the household, the higher the response rate. Also, the Arab 
population tends to respond more than the Jewish one, while the ultra religious group 
tends to respond less than the rest of the population. Those last two results hold with 
and without adjustment for income and household size. The implications on the bias 
in the estimates are discussed.   
 
Keywords: nonresponse, regression, Gini. 
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INTRODUCTION 

The purpose of this paper is to present a new, nonparametric method for investigating the 

curvature of a regression curve. The method is capable of estimating a series of linear 

approximations of the regression curve, allowing the investigator to stress different 

sections along the range of one independent variable, while keeping the other 

independent variables intact. This property enables the researcher to learn whether the 

conditional regression curve is linear, convex or concave in one independent variable, 

given the weighting scheme applied to slopes of other independent variables. The main 

purpose of the method is descriptive. One major advantage is that it can treat each 

independent variable individually, concentrating on the (conditional) relationship 

between the dependent variable and one independent variable, given the other 

independent variables. All regressions rely on all observations, eliminating the need to 

arbitrarily define windows, or omit observations.  

The methodology is illustrated by investigating the tendency not to respond to 

questionnaires on finances of the household in official surveys. The common wisdom 

with respect to this issue is that either or both rich and poor people tend to respond less 

than ordinary people. Since we have no firm priors with respect to the kind of 

relationship we expect to see, the need for a nonparametric method that can analyze the 

data arises. 

The main conclusion of the empirical application is that nonresponse to the 

survey of family expenditures is a decreasing convex function of income, and almost 

reaches a plateau when high-income groups are stressed. Nonresponse tends to be 

negatively related to household size. The nonresponse rate differs among ethnic groups: 

the Arab population shows below average nonresponse rate, while the ultra religious 

Jewish group has above average nonresponse rate. This result holds even when the 

response rate is adjusted for income and household size.  

  Since the estimators in this paper are based on the sample’s analogues of the 

population parameters, we will use capital letters to represent population parameters and 

small letters to represent the estimators.   

The structure of the paper is the following: The first section presents the 

nonparametric regression coefficients in the simple regression case. Section 2 extends it 

to a multiple regression framework, and the third section presents the estimators and 

their standard errors. Readers who are not interested in the exact derivation of the 
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estimates and their standard errors can skip the third section. Section 4 presents the data 

and the research question, the fifth section presents the empirical results while the sixth 

evaluates the implication of nonresponse on measurement of inequality. Section 7 

concludes.  

   

SECTION 1: THE SIMPLE REGRESSION CASE 

Let (Y,X) be a bi-variate random variable with expected values µY and µX and finite 

variances 2
Yσ and 2

Xσ , respectively, and let g(x) = E{Y|X=x} be the regression curve.  

The error term at (Yi, Xi) is defined as the deviation of Yi from a linear approximation      

α + β Xi, i.e., εi = Yi– α – β Xi, where α and β are parameters to be defined later. No 

assumptions are imposed on the error term, and no structure is imposed on the regression 

curve. In particular, this means that E{ε |X=x} =g(x)- α – β x, which is equal to zero for 

all values of x only if g(x) is a linear function of x.   

  We are interested in estimating a linear approximation to the regression curve, 

g(x). We start with the parameter representing the slope, β, and only later the constant 

term is dealt with. The parameter representing the slope of the linear approximation of 

the regression curve will be referred to as the EGRC (Extended Gini Regression 

Coefficient). The slope will be defined as a weighted average of the derivatives of g(x), 

with the weights being derived from the extended Gini variability index. In some sense, 

the approach in this paper can be viewed as similar to the one presented in Angrist, 

Chernozhukov and Fernándaz-Val (2004), who analyzed the linear approximation of a 

misspecified model in a quantile regression approach.    

  The extended Gini variability index is a member of a family of indices defined 

by  

G(X,ν)= -(ν+1)COV(X,[1-F(X)] ν), ν>-1, ν ≠ 0. 

By determining ν the investigator introduces his preference concerning the 

measurement of variability of the independent variable. The role of ν in the extended 

Gini variability index is to reflect the investigator’s attitude toward variability. The 

higher ν, the more stress is put on the lower portion of the distribution of the 

independent variable. In the extreme case (ν → ∞) the investigator cares only about the 

lowest part of the cumulative distribution, as if he is guided by the max-min criterion. If 

ν = 1 then the investigator measures variability according to Gini’s mean difference, 

implying a symmetric weighting scheme around the median. If ν → 0, the investigator 
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does not care about variability; the range -1≤ ν < 0 reflects giving higher weights to the 

upper side of the distribution of the independent variable, while ν → -1 implies an 

investigator whose attitude to variability follows the max-max strategy, that is, caring 

about variability around the highest part of the distribution only. It is worth noting that 

when -1 ≤ ν < 0, the index of variability is negative.  (See Donaldson and Weymark 

1983; Yitzhaki 1983; and Chakravarty 1988, chap. 3, pp. 82-102, for description of the 

properties of the extended Gini index. Garner (1993), Lerman and Yitzhaki (1994), and 

Wodon and Yitzhaki (2002) are examples of its decomposition and use in welfare 

economics; see Araar and Duclos (2003) for a possible extension; see Davidson and 

Duclos (1997) for statistical inference, and Millimet and Slottje (2002) for an 

application in environmental economics). However, in the above-mentioned literature, 

the parameter is restricted to ν > 0. Schechtman and Yitzhaki (1987, 1999, 2003) define 

and investigate the properties of the equivalents of the covariance and the correlation. 

The decomposition of the extended Gini of a sum of random variables into the 

contributions of the extended Gini’s of the individual random variables, and the 

(equivalent of) correlations among them can also be found there. Olkin and Yitzhaki 

(1992) define the simple Gini regression coefficients and investigate their properties. 

 

Definition and properties of Extended Gini Regression Coefficient (following 

proposition 3 in Yitzhaki 1996).   

(a) The extended Gini regression coefficients (EGRC) are defined as: 

where ν is a parameter, determined by the investigator in order to determine the 

weighting scheme. (The factor -(ν+1) cancels out. It is presented here to emphasize that 

both numerator and denominator are based on extended Gini’s). The subscript yx will 

be omitted in the simple regression case. 

(b) Equation (2) presents the EGRC as a function of the derivatives of g(x) and shows 

how ν determines the weighting scheme. That is,   

 with  W(x, ν) ≥ 0  and  ∫
∞

∞−

 W(x, ν)dx = 1,  where 

 ,0v1;v,
)](X)F - [1 1)COV(X,(v
)](X)F - [1 Y, ( 1)COV(v = (v)β ν

x

 ν
xyx ≠−>

+−
+−   (1) 

 ,)dx (x g ν) ,(x  W  = β(ν)   ′∫   (2) 
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 Yitzhaki (1996) presents the weights for specific distributions of the independent 

variable.  

 (c) Let x[i]  be the i-th order statistic, and let yi be the observation of y that accompanies 

x[i]. Then, the estimators of β(ν), for all ν, can be expressed as weighted averages of 

slopes defined by pairs of adjacent observations: 

 where bi = 
 x - x

y - y

[i] ]1[ 

i1i+

+i
   (i = 1, ..., n-1);  wi > 0,   Σwi = 1,  and  

where xi∆ =x[i]-x[i-1]. 

 (d) The estimators b(ν) can be expressed as ratios of U-statistics. [Generally speaking, 

a U-statistic is an unbiased estimator for the parameter, which is created by forming an 

average of symmetric functions, called kernels. The interested reader is referred to 

Randles and Wolfe 1979, chap. 3, for details]. As such, b(ν) are consistent estimators of 

β (ν); for large samples, the distributions of the estimators converge to the normal 

distribution under regularity conditions. 

 (e) Suppose that E(Y|X) = α + βX and Var(Y|X) = σ2 < ∞, then: (1) following property 

(b), β (ν) = β for all ν, and  (2) all extended Gini estimators b(ν)  (that is, regardless of ν) 

are consistent estimators of  the same β. 

Proofs: See Yitzhaki (1996), Proposition 3.  

  The properties above show that all EGRC can be expressed as weighted 

averages of slopes defined between adjacent observations, with the weighting scheme 

being determined by the ν attached to the independent variable, and by the distribution 

of the independent variable.   

  By changing ν and re-estimating the model, the investigator can learn about the 

curvature of the regression curve. The higher ν, the higher is the weight that is given to 

the slopes of the regression curve at the lower end of the range of the independent 

variable. In case the curve is linear, the estimates of the regression coefficient, for all ν, 

 .   
dt]])(t  F - [1 - )](t  F - [[1 

 ])(x  F - [1 - )](x  F - [1 = ν) ,(x W 
)1(

xx
-

)1(
xx

+
∞

∞

+

∫ ν

ν

  (3) 

 , b  w)b(ν ii

1-n

1=i
∑=   (4) 

 . 
x ] )k  -n  ( - )k  -n  ( n [ 

x ] ) i -(n  - ) i -(n  n[ =) (x,w w
k 

1
1n-

1=k

i
1

ii

∆

∆
=

+

+

∑ νν

νν

ν   (5) 
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do not differ significantly. If b(ν) turns out  to be a declining (increasing) function of  ν, 

then the regression curve is convex (concave). But of course, it may be that it does not 

show a specific pattern. Also, since it is based on all observations, it is clearly not able 

to detect small local deviations. (In the conclusions section, we offer an extension to 

deal with this issue as well). Note that unlike the case of using windows to estimate the 

slopes of the regression curves at different ranges, in the EG regressions all 

observations participate in all the regressions, and the only difference is in the 

weighting scheme applied.  

  Although it was not produced through an optimization, each extended Gini 

regression produces a normal equation. To see this, define 

                    β(ν)XYε(ν) −−== αε .                                                                            (6) 

Then,  

                     0)F(X)][1COV( ν =−,ε   .                                                                          (7) 

Equation (7) can be proved by plugging (6) and (1) into (7).  By the same reasoning, it 

can be shown that the sample’s version of Equation (7) holds.  

  We now move to define the constant term. Unlike other regression methods, the 

constant term is not estimated simultaneously with the regression coefficients, but 

follows it. Hence the constant term need not be selected according to the methodology 

used to derive the regression coefficients. The constant term depends on the function of 

the residuals that is being minimized. To do that one first derives an error term without 

taking into account the constant term. Minimizing the sum of squared deviations of the 

error term from a constant yields an estimated linear approximation, which passes 

through the means of the variables, while minimizing the sum of the absolute deviations 

of the error term from a constant forms a constant term so that the estimated linear 

approximation will pass through the medians, etc.  

  Finally, we would like to mention the following: 

(a) The OLS can be presented in the same way, except that the weighting scheme is 

derived from the variance of the independent variable (Yitzhaki 1998).  

(b) As far as we know, the EG regression is the only regression method in which the 

investigator controls the weights attached to each part of the distribution of the 

independent variable. For example, under quantile regression (Koenker and Bassett 

1978), the weighting scheme is applied to the residual ei. (To see this, note that ei =Yi – 
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α̂  – β̂ Xi is the residual, and hence the optimization must be applied to a function of the 

residuals. Therefore, the quantile is a quantile of the residual). 

(c) Numerically, the extended Gini regression coefficient, when ν = 1, is identical to 

the Durbin’s (1954) suggested estimator, which is based on using the rank of the 

independent variable as an instrumental variable. In the sample, the rank is given by the 

empirical distribution multiplied by the sample size, hence the identity. However, the 

motivation, the distribution of the estimators, and other properties are totally different. 

One can take advantage of this analogy and extend it to all EGRCs, and use it to 

calculate the estimates (but not the standard errors) of the EGRC using standard 

regression software. Note, however, that this interpretation does not apply without 

qualification to the multiple regression case (as discussed at the end of the next section).   

 

SECTION 2: THE MULTIPLE REGRESSION CASE 

The target of this section is to develop an extension of the simple regression coefficients 

suggested in Yitzhaki (1996) to the multiple regression case.  

 Let (Y,X1,…,XK) be a (K+1)-variate random variable with expected values  (µY , 

µ1, …, µK) and a finite variance-covariance matrix Σ. Let g(x) = E{Y|X1 =x1, …,XK=xK} 

be the regression curve. Similar to the simple regression case, the error term at (Yi, X1i, 

X2i,…,Xki) is defined as the deviation of Yi from the linear approximation  

kk2211 Xβ...XβXβα ++++ , i.e., kk11ii Xβ...XβαYε −−−−= . Again, no 

assumptions are imposed on the error term, and the regression curve need not be a linear 

function of the independent variables. 

 As before, an investigator is interested in estimating a linear approximation of 

the regression curve. Consider a first order Taylor expansion around zero of the 

regression curve. By construction, the expansion is linear.  

 The slopes of the linear approximation can be written as: 






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
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                                               (8)                                 
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Using the simple regression coefficients developed in Section 1 to represent the simple 

slopes in the Taylor expansion implies that )(νβ
dx
dx

and)(νβ
dx
dy

kjk
k

j
k0k

k

== , where 

the subscript 0 refers to the dependent variable, and k=1,…, K, indicate the independent 

variables. Having done that, we can rewrite (8) as: 









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iν
.        (9)                                 

Using Equation (9) one can solve for the estimators of the partial derivatives 
kx

g
∂
∂ which 

will be equal to: 



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.                                    (10)                                 

Note that in (10), the vector on the right-hand side depends on all the νi. Also, the 

denominator of each row k in the matrix (before inverting it) is 

)(X)]F[1,COV(X1)(ν(X)G)ν,G(X kνkkkkkk −+−==  (i.e. the denominator in each 

row is the extended Gini of the appropriate variable). 

 We refer to the estimators as implied partial derivatives because we do not argue 

that they represent the derivatives at a given point, but if one accepts the notion of a 

linear approximation, and accepts simple regression coefficients as representing 

weighted averages differentials, then for consistency, one has to accept the partial 

regression coefficients as the solution offered in (10).  

 If (8) represents slopes of a truly linear model, then all the coefficients at the 

right-hand side of (10) are constants, and the left hand side must represent by 

construction the partial derivative of the regression curve. On the other hand, if the 

regression curve is not linear, then by changing νi, one can trace the change in ixg ∂∂ / , 

other things being equal, by changing the weighting scheme attached to the slopes of 
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variable i. Note that by other things being equal, it is meant that all rows, except row i in 

the matrix of regression coefficients in (10), remain unaffected, and all elements in the 

vector of simple regression coefficients of the dependent variable on the independent 

variables, except element i do not change.  This is a unique property of the EG, which is 

due to the fact that there are two covariances and two correlations between each pair of 

random variables (see comment at the end of this section). Therefore, βij can be changed 

without affecting βji. We will discuss further adjustments of the estimators to represent 

changing derivatives along the range of the independent variable in the conclusions 

section. 

 Since we are allowed to multiply each row by a constant (in our case, the 

constant is the extended Gini of the independent variable), the matrix can be presented in 

a way, which is similar to the variance-covariance matrix in OLS, with Gini’s and co-

Gini’s replacing the variances and covariances, respectively.  

 Like the simple regression, the multiple regression procedure, although it is not 

based on an optimization procedure, generates equivalents to the OLS’s normal 

equations. By defining the error term, and substituting for the multiple regression 

coefficients, it can be shown that 

   0)(X)]F[1ε,COV( kν
k =−  for k=1,…, K.                                                                  (11)                                

 The first step in this section was to define the linear approximation of the 

regression in the population. We now move to the estimation procedure. Before we turn 

to the estimation stage, we shall rewrite the parameters in matrix notation. Consider Y as 

a dependent variable and let X1,..., XK be the independent variables. Let V be a (nxK) 

matrix of power functions of (one minus) the cumulative distributions of X1,..., XK (in 

deviations from their expected values), multiplied by -(νk+1). That is, a typical element 

in V is  

}
1ν

1)](xF1){[1(νV
k

ν
ikkkik

K

+
−−+−= . The vector of regression coefficients, β(ν), is 

defined by  

  β(ν) = [V'X]-1 V'Y,                                                                                 (12)                                                         

where β(ν) = {β1(ν1),..., βK(νK)} is a (K x 1) column vector, V is an (n x K) matrix 

defined above, Y is an (n x 1) column vector of the dependent variable, and X is an (n x 

K) matrix of the deviations of the independent variables from their expected values. The 

vector V'Y is a column vector, the elements of which are 
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))]F(X-[11)COV(Y,(ν- kν
kk + , that is, the EG covariances between the dependent 

variable and the independent variables. The matrix A = V'X is a matrix with the elements 

))]F(X-[1,1)COV(X(ν- kν
kjk + , that is - its elements are EG equivalents of variances 

and covariances of the independent variables: the diagonal elements are the EG's of the 

independent variables, while the off-diagonal elements are EG - covariances between 

pairs of independent variables. It is assumed that rank [V'X] equals K, the number of 

independent variables. The requirement that one can invert the matrix [V’X] implies a 

restriction on the choice of the independent variables that does not exist in OLS. If the 

ν's assigned to different independent variables are all equal, then no independent variable 

can be a monotonic transformation of another independent variable, because it will 

imply identical rows in the matrix (which depends on X via F(X)). However, if the ν's 

are different, then one independent variable can be a monotonic transformation of 

another independent variable without causing colinearity in the [V’X] matrix. For 

example, X and eX cannot appear simultaneously as independent variables in EG 

regressions if they have the same ν, but they can participate with different ν's.      

 We now turn to the estimation step. First one estimates the regression coefficient, 

and given the estimated regression coefficient, one moves to estimate the constant term.  

The natural estimators of the regression coefficients are based on replacing the 

cumulative distributions by the empirical distributions (which are calculated using 

ranks):   

 b(ν) = [v'x]-1v'y  ,  (12’) 

where v is a matrix with elements 1)]1/(ν))r(x(n1)[n(ν k
ν

i
ν

k
k

k

k +−−+− − , and r(xik) is the 

rank of xik among x1k,…,xnk.  As in the simple regression case, an orthogonality 

condition is satisfied as given in the following lemma: 

 

Lemma 2.1:  Define the vector ε(ν) = Y - X β(ν). Then, V'ε(ν) = o where o is a vector of 

zeros.   

Proof:  V'ε(ν) = V'Y -V'Xβ(ν) = V'Y - V'X [V'X]-1V'Y = o. 

This property holds in the sample as v'e(ν) = o, where  e(ν) = y - x b(ν) .  

 As pointed out in the simple regression case, b(ν)={b1(ν1),..,bK(νK)} is identical 

to an instrumental variable estimator in an OLS regression, with a power function of 

rank X serving as the instrumental variable. This interpretation provides an alternative 

method for calculating b(ν) by using any standard regression software. Note, however, 
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that (a) since no assumptions are imposed on the model, the sampling distribution of b(ν) 

still needs to be investigated for the present setup (as detailed in Section 3), and (b) each 

independent variable is substituted by only one instrumental variable, which makes the 

reliance on a standard regression package problematic.   

 It is worth emphasizing an important property that is unique to the EG multiple 

regression. The EG has two correlations defined between each pair of variables so that in 

contrast to the OLS, a symmetric correlation is not imposed on the independent 

variables. When the parameter ν of one independent variable is changed, only one of the 

two correlations defined with any other independent variable is affected. This property 

allows us to refer to the partial regression coefficients as representing partial derivatives 

because changing ν for one independent variable may only change its own slope, and 

one set of the asymmetric EG correlation coefficients that accompany it.  

 The constant term will be estimated in a way, which is identical to the simple 

regression case. That is, the investigator can minimize a function of the error terms. The 

exact function used determines whether the regression passes through the mean or the 

median. Section 3 derives the asymptotic properties of the estimators. Readers who are 

mainly interested in the application can skip Section 3.      

   

SECTION 3: THE ASYMPTOTIC BEHAVIOR OF ESTIMATORS 

For simplicity, the presentation of the asymptotic properties will be restricted to the two 

independent variables case, with different values of ν. All the results can be extended to 

the K-variable case. 

 A natural way to estimate the regression coefficients is based on replacing the 

cumulative distributions by the empirical distributions. 

 Let the estimated equation be: 

 y = b(ν1, ν2) 01.2 x1 + b(ν1 ,ν2 )02.1 x2 + e (ν1 ,ν2 )  ,                             (13) 

where b0i.j represents the nonparametric EG regression coefficient of the implied partial 

effect of Xi on the conditional mean of Y, given that Xj is in the model, but held fixed. 

The constant term is not needed for estimating (13) and it will be estimated later, 

according to the requirements on where the linear approximation should pass (mean, 

median, quantile). For simplicity of presentation we will omit, whenever possible, the 

parameters ν1 and ν2, keeping in mind that the partial regression coefficients, b, are 

functions of those parameters. The vector b, expressed in matrix notation in (12'), can be 

explicitly written as (for K=2): 
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where c0i  = -(νi+1) cov(y, [1-ri/n]νi), (i=1,2); cij = -(νj+1) cov(xi, [1-rj/n]νj);  D = c11c22 - 

c12c21 and  ri is the vector of ranks of xi.  

 In what follows, we introduce an alternative estimator of β, based on functions of 

U-statistics. We show that its limiting distribution is normal, and that the differences 

between the b of (14) and the estimators based on U-statistics are negligible; hence, the 

limiting distribution of b is also normal. The advantages of using the U-statistics as 

estimators are that they provide unbiased estimators of the individual parameters, they 

have minimum variance among all unbiased estimators, and their asymptotic 

distributions are well known (Randles and Wolfe 1979, chap. 3). Also, the functions of 

U-statistics are consistent estimators of the respective parameters, and their limiting 

distributions are normal (under regularity conditions). The structure of this section is as 

follows: first, a kernel is found for the relevant parameters (defined below). Then, a U-

statistic based on the kernel is obtained for each of the parameters. Using the above U-

statistics, an estimator bU is suggested for β, based on a function of dependent U-

statistics, and it is shown that it is a consistent estimator for β; while the next step is to 

find its asymptotic distribution. This is done using asymptotic results from U-statistics 

theory. Finally, it is shown that √n bU and √n b have the same limiting distribution. Once 

the asymptotic distribution is known to be normal, and the asymptotic variance can be 

calculated using jackknife, for example- (see Shao and Tu 1996), inference can be drawn 

(confidence intervals and hypothesis tests) for each parameter.  

Let  

  θ = -(ν+1) COV(Y, [1-F(X)]ν) .  (15) 

The parameter θ is the EG equivalent of the covariance between Y and X, and is a 

typical element of V'Y (see (12)) and of V'X (when X replaces Y).  

The following theorems are proved only for the case where ν is an integer. 

 

Theorem 3.1: Let (X1,Y1),...,(Xν+1,Yν+1) be a random sample of size (ν+1) from a 

continuous bi-variate distribution FX,Y with finite second moments. Let 

 

    ,yy))y,(x),...,y,h((x
(1)x1ν1ν1ν11 −= +++                                                                     (16) 
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where y ν+1  is the average of y1,..,yν+1 and 
(1)xy  is the y that belongs to x(1), the minimum 

of x1,...,xν+1. Then h((x1,y1),...,(xν+1,yν+1)) is a symmetric kernel of degree ν+1 for the 

parameter θ of (15). That is - h((x1,y1),...,(xν+1,yν+1)) is an unbiased estimator of the 

parameter θ, based on ν+1 observations. (See Randles and Wolfe 1979, p. 61). 

Proof: The parameter θ of (15) can be expressed as follows: 

    θ = - (ν+1) COV(Y, [1-F(X)]ν ) = (ν+1) E{Y} E{[1-F(X)]ν } - (ν+1) E {Y [1-F(X)]ν}  

       = µY - (ν+1) E{Y [1-F(X)]ν} . 

Therefore, we need to show that E{YX(1)
} = (ν+1) E {Y [1-F(X)]ν} .               

Claim:      E {YX(1)
|X(1) = x} =  E {Y|X = x}. 

The proof of the claim is restricted to the discrete case.  

Proof of the Claim: 

  E{YX(1)
| X(1) = x} = ∑

+

=

1

1

ν

i
yi P(YX(1)

 = yi | X(1) = x) = 

  = ∑
+

=

1

1

ν

j
∑

+

=

1

1

ν

i
 yi P(YX(1) = yi| X(1) = x, Xj =X(1) ) P(Xj = X(1)) = 

  = ∑
+

=

1

1

ν

j
∑

+

=

1

1

ν

i
 yi P(Yj = yi| Xj = x) 1/(ν+1) = 

    ∑
+

=

1

1

ν

j
 E (Yj | Xj=x ) 1/(ν+1) = E(Y|X=x) . 

Using the claim, 

  E{YX(1)
} = EX(1)

 { E (YX(1)
| X(1)=x } = 

 ∫ E(YX(1)
|X(1)=x) fX(1)

(x) dx = (ν+1) ∫ E(YX(1)
|X(1)=x) [1-F(x)]νf(x) dx  

  = (ν+1) ∫ E(Y|X=x) [1-F(x)]νf(x) dx 

 = (ν+1) ∫∫ y f(y|x) [1-F(x)]νf(x) dy dx 

 = (ν+1) ∫∫ y [1-F(x)]νf(x,y) dy dx = (ν+1) E{ Y [1-F(X)]ν } . 

The symmetry of h((x1,y1),..., (xν+1,yν+1)) is obvious.                                   QED. 

 

Let h((x1,y1),..., (xν+1,yν+1)) = y ν+1 - yx(1) , as in (16) and let 
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where (i1,...,iν+1} is a permutation of (ν+1) indices chosen from (1,...,n). Then, U is a U-

statistic for the parameter θ, and is therefore an unbiased and consistent estimator of θ 

(Randles and Wolfe 1979, corollary 3.2.5). 

 Using combinatorial arguments, U can be simplified and written as a linear 

combination of concomitants of the order statistics as follows: 

(Note that if ν> (n-i), then 








ν

i-n
 =0). 

Following theorem 3.1, all the elements of (12) can be estimated by U-statistics and 

hence, for k=2, β can be estimated by a vector of size 2, whose elements are functions of 

several (dependent) U-statistics. 

Let 

          µ' = (µ1, µ2,..., µ6) = (C01, C02, C11, C12, C21, C22)  

be the vector of the parameters, where C0i = COV (Y, [1-F(Xi)]νi) and 

  Cij = COV (Xi, [1-F(Xj)]νj), and let  

        U' = (U1, U2,…,U6) = (c01, c02, c11, c12, c21, c22)   

be the corresponding vector of U-statistics (whose elements are given in equation 14). 

The estimator of β, based on functions of U-statistics, can be written as: 

where U0i is the U-statistic based on the kernel y νi+1 - yxi(1) , (i=1,2), and Uij is the U-
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statistic based on the kernel 1νi, j
x + - xi,xj(1) , where 1νi, j

x +  is the average of (νj+1) 

observations of Xi, and xi,xj(1) is the value of Xi, which belongs to the smallest value of Xj 

(out of the νj+1 values), and D = U11 U22 - U12 U21. 

Using the above notation, we can obtain the following results: 

Theorem 3.2 

Let (yi, xi1, xi2, i=1,2,..,n) be a sample drawn from a continuous multivariate distribution 

with finite second moments and such that µ3 µ6 - µ4 µ5 ≠ 0. Then, bU in (18) is a 

consistent estimator of β in (12) (i.e., each component of bU is a consistent estimator of 

the respective element of β).  

Proof: Since each U-statistic converges in quadratic mean, and thus in probability, to the 

parameter it estimates, it follows by Slutzky's theorem (Randles and Wolfe 1979, 

Theorem A.3.1.3) that  

and thus the former is a consistent estimator of the latter.                                     QED.       

Theorem 3.3, due to Hoeffding (1948, Theorem 7.1) and Theorem 3.4, due to Serfling 

(1980, Theorem 3.3.A) are needed for the derivation of the asymptotic distribution of bU.    

Theorem 3.3 

Under the assumptions of Theorem 3.2, the vector U has an asymptotic normal 

distribution with mean µ and a variance-covariance matrix dn
2Σ, where dn = 2/(√n). That 

is, √n (U-µ) →D N(0, 4Σ). 

Theorem 3.4 

Let Un = (U1n,..,U6n) be asymptotically normally distributed with mean vector µ and a 

variance-covariance matrix Σ. Let g(U) = (g1(U), g2(U)) be a vector-valued function for 

which each component function gi(U) is real-valued and has a nonzero differential g(µ;t),  

t =(t1,..,t6) at U=µ. Let 

Then bU = g(Un) is AN(g(µ) , dn
2M ΣM'), where AN is asymptotic normal and  dn → 0 as 

n → ∞. 
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Proof: 

By Theorem 3.3 the vector U is AN(µ , dn
2Σ), with Σ a variance-covariance matrix and 

dn = 2/(√n) → 0 as n →∞. Let 

where D = U3U6 - U4U5 , is the vector-valued function. The proof follows Serfling 

(1980) Theorem 3.3.A. The explicit form of Σ is omitted since it is complicated. (The 

matrix Σ involves variances of the individual U-statistics, as well as covariances between 

each pair of U-statistics. Using Slutzky’s Theorem, a consistent estimate of Σ can be 

obtained by replacing each parameter by its consistent estimate). A practical way to 

estimate it, using jackknife, is given in Yitzhaki (1991). Theorem 3.4 states that √n bU is 

asymptotically normal. In order to obtain the same result for √n b, the estimator based on 

replacing the cumulative distribution by the empirical one, it is required to show that 

√n(b-bU) → 0 as n →∞. This is shown in the Appendix. 

 

SECTION 4: AN APPLICATION: WHO DOES NOT RESPOND TO 

QUESTIONNAIRES? 

Surveys suffer from nonreporting, even if refusal to respond is illegal, as is the case in 

official surveys in Israel. If nonreporting is correlated with income, then the estimates 

of the mean income and the index of income inequality may be biased. Nonreporting 

can occur for various reasons; some of them depend on the individual (refusal, not-at-

home, etc.), while others may be due to problems at the collecting agency (the 

interviewer did not find the dwelling, did not approach the respondent at a convenient 

time, errors and omissions at the agency, etc.). In this paper we do not investigate the 

causes of nonresponse. We will be interested in describing it as a function of several 

demographic variables (which can be used later in designing the sample) and one 

major variable, income. In general, the experience concerning nonreporting is that the 

propensity not to respond is a U-shaped function with respect to income, because the 

rich tend not to participate, while the poor and the young can not be found easily at 

home. A recent study by Mistiaen and Ravallion (2003) presents a model in which 

compliance can either decrease or increase with income, and also be of an inverted U-

shape. Moreover, adding other arguments such as the ability to find the members of 
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the households at home, finding the address, viewing participation as a democratic 

value, etc., can lead to almost all kinds of patterns. Mistiaen and Ravallion (2003) find 

that the nonresponse problem is not ignorable, and that there is a highly negative 

significant income effect on compliance. Deaton (2003) raises the plausible conjecture 

that richer households are less likely to participate in surveys, in order to explain the 

gap between growth estimates based on households’ surveys and those that are based 

on national accounts. (Comprehensive studies, dealing with almost all aspects of 

nonresponse are detailed in Groves and Couper (1998) and Groves, Dillman, Eltinge 

and Little (2002)). The main conclusion from reading the literature is that nonresponse 

is a serious issue that may bias the estimates, but we do not have enough knowledge 

to justify making the assumptions needed for running OLS or other parametric 

regressions.  

 Investigating the magnitude and the effect of nonresponse on the results is a 

bit complicated since one is dealing with missing observations. The direct way to 

learn about the problem is to analyze the properties of non-respondents from the 

scatter information known about them, like the location of the dwelling, and other 

direct or indirect information that can be taken from the files used for the sampling.  

Such an approach suffers from two major problems: (a) the information that one can 

gather is not sufficient (b) the response rate in the sample we are dealing with is 

around ninety percent, so that the sample of nonresponse is relatively small. The main 

idea in this empirical illustration is to use the sample of the respondents to learn about 

the effect of nonresponse.  For this purpose, we rely on a common procedure used in 

many official statistical offices.     

 To overcome biases that are caused by the sample being a nonrepresentative one 

and to reduce standard errors, many statistical agencies adjust the distribution of the 

sample to fit known marginal distributions of current demographic estimates that are 

based on the census. The outcome of this adjustment is a weighting scheme: a weight is 

attached to each observation. (A necessary condition to be able to perform such an 

adjustment is having a detailed census data. Also, there are other reasons for using those 

procedures, among them is to insure that different samples, performed by different units 

of the agency, report the same demographic structure so that official statistics will not be 

blamed by the media of publishing contradicting estimates. This may explain why the 

adjustment to given margins is performed mainly by producers of official statistics).  For 

a survey of the different methodologies used to construct weighting schemes, see the 
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survey by Kalton and Flores-Cervantes (2003). A detailed description of the method 

used in Israel is offered in Kantorowitz (2002). For the purpose of this paper, it is 

sufficient to say that the above-mentioned procedures change the weight of each 

observation, so that it adds up to given marginal demographic and geographic 

distributions.  

 The sample we are dealing with is a sample of dwellings. It is a stratified sample 

according to geographical areas and types of dwelling, but the probability of each 

dwelling to be included in the sample is the same. Since the probability of each dwelling 

to be included in the sample is the same, the expected value of the weight of each 

observation is equal to the ratio of the overall population to the sample size. When 

nonresponse occurs in a certain group, it will be underrepresented in the sample, so that 

the weight that will be assigned to those who responded in that group will be higher than 

its expected value in case of equal tendency to respond.   

From the point of view of our investigation, the important fact is that if the 

propensity of nonresponse is equal among all potential respondents, then the expected 

weights of all observations will be equal. Moreover, the higher the nonresponse, the 

higher the weight assigned to this type of observation. Hence, the weight attached to an 

observation can serve as an indicator of nonresponse, and will serve as the dependent 

variable in our analysis. If nonreporting is random, then we should expect the weight to 

be uncorrelated with other characteristics of the population. If the slope of the regression 

curve of weight on income is positive then we conclude that nonreporting increases with 

income. If it is positive, but declining when high incomes are stressed, then we conclude 

that nonreporting increases with income but the propensity not to respond declines with 

income.   

 The weighting scheme of the sample is produced by an algorithm for calibration, 

with several hundreds of constraints imposed, and is intended to make the sample 

representative (Kantorowitz 2002). In particular, a constraint is imposed on the maximal 

weight assigned to each observation, so that standard errors do not increase 

unnecessarily.  The constraints insure that the reported age structure, geographic 

distributions, household sizes will add up to given margins of the distributions of the 

population.  

In some sense our purpose is to summarize the effect of the several hundreds of 

constraints imposed on weights to add up to given demographic margins, into the effect 

on the variable of interest, which is income.  It is important to note that the income is not 
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involved at all in the derivation of the weights. Hence, there is no built-in correlation 

(i.e., spurious correlation) between the weight of each observation and income.  

 The survey of household expenditures in Israel is conducted every year since 

1997. Since in some years observations from East Jerusalem were missing, we have 

omitted those observations from all years to get an identical coverage. The probability of 

each household to be included in the sample is equal. Hence, if the propensity of the 

population to respond and the surveying process are not correlated with demographic 

properties, then the expected values of all weights should be equal.  The sum of the 

weights represents the whole population of the country. Since the size of the sample 

relative to the overall population changes over the years, the average value of the 

weights and the slope of the regression can change between years. (It is as if one 

multiplies the weights in each year by a different constant). We did not correct for this 

problem, since its effect is small and it is important only when comparing results from 

different years. For the sake of simplicity, we preferred to concentrate and present the 

results for the last available year, and checked whether the main conclusions reached are 

sensitive to the selected year. 

Table 1 provides descriptive statistics of the weights according to different years 

and ethnic groupings. The population is divided into three groups: Two minority groups 

- Arabs and ultra religious Jews (an ultra religious household is defined according to the 

school attended by the head of the household), and the rest – referred to as the majority 

group. The reason for this distinction is that experienced enumerators reported that those 

groups tend to have different patterns of nonresponse.   

  In general, one can observe from Table 1 that for all years the average weight of 

the Arab population is the lowest, meaning that they have fewer cases of nonresponse. 

The maximum weight attached to an observation should be viewed with caution because 

some of the programs assigning the weights may restrict the weight not to be greater than 

a certain value. It is worth noting that although the order of average weights according to 

the groups remains the same over the years (except for 1999), the order of the standard 

deviations of the weights changes.    
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Table 1. Descriptive Statistics of Household Weights by Ethnic Grouping. 

Weight 
Year 

Ethnic 
Group 

 
n Average Max Min Std.Dev. 

 Majority 4,942 283 1,196 20 166 
1997 Arabs 529 267 1,051 19 199 
 Ultra religious Jews 90 398 1,127 45 245 
 
 Majority 5,068 286 1,196 18 169 
1998 Arabs 606 256 1,049 24 176 
 Ultra religious Jews 98 321 766 26 166 
 
 Majority 5,114 291 1,134 13 154 
1999 Arabs 597 269 1,129 14 169 
 Ultra religious Jews 105 292 639 20 115 
 
 Majority 5,146 301 1,195 22 170 
2000 Arabs 629 260 959 43 142 
 Ultra religious Jews 89 310 1,017 33 148 
 
 Majority 5,049 314 1,185 18 152 
2001 Arabs 662 285 1,902 31 171 
 Ultra religious Jews 76 341 834 104 145 

NOTE: Source: HES 1997-2001, excluding the observations of East Jerusalem in 1997-1999. 

 

Since the groups differ in household size, which may affect the probability of finding 

someone at home, Table 2 presents the average weights according to household size. It 

can be seen that for the majority, household of size 1 has the highest weight, and the rest 

are similar (year 2001 is different). This may be a result of small households not being at 

home while the elderly, although being at home, do not have the patience to complete 

the questionnaire. (For Arabs, there is no obvious pattern. Nothing can be said about the 

ultra religious Jews, since the sample sizes are quite small). 
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Table 2. Mean of Household Weights by Ethnic Grouping and Household Size. 

Household Size 
Year Ethnic Group 

  
  1 2 3 4 5+ 

 Majority Mean 325 278 278 276 266 
   N 840 1,199 807 910 1,186 
1997 Arabs Mean 288 246 255 236 281 
   N 12 48 54 102 313 
 Ultra religious Jews Mean 273 363 294 315 488 
   N 2 18 16 13 41 
        
 Majority Mean 330 280 290 276 268 
   N 869 1,281 788 964 1,166 
1998 Arabs Mean 316 338 241 252 247 
   N 13 49 70 98 376 
 Ultra religious Jews Mean 235 247 385 329 325 
   N 3 12 13 12 58 
        
 Majority Mean 333 291 276 297 266 
   N 892 1258 878 919 1167 
1999 Arabs Mean 230 248 321 302 256 
   N 15 49 64 93 376 
 Ultra religious Jews Mean 176 293 291 333 288 
   N 3 20 11 12 59 
        
 Majority Mean 351 291 310 280 282 
   N 875 1,296 867 965 1,143 
2000 Arabs Mean 323 223 272 381 237 
   N 17 58 64 78 412 
 Ultra religious Jews Mean 239 327 254 336 301 
   N 3 21 1 13 51 
        
  Majority Mean 363 294 326 291 308 
   N 886 1,325 838 949 1,051 
2001 Arabs Mean 521 261 290 304 271 
   N 20 64 74 116 388 
 Ultra religious Jews Mean 393 346 483 366 319 
   N 3 16 4 8 45 

NOTE: Source: HES 1997-2001, excluding the observations of East Jerusalem in 1997-1999. 

 

To summarize: The dependent variable is the weight assigned to each observation by a 

calibration procedure, intended to represent the entire population. The sample is a 

stratified sample, but the probability of each dwelling and each person living in a 

dwelling to be included in the sample is equal. Hence, if the propensity not to be 

included in the sample is equal, either because of nonresponse or errors on behalf of the 

agency, the expected weight assigned to each observation should be equal. It may differ 

between years, if the ratio of sample size to population changes between years. The 
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weight is treated as an indicator of nonresponse. Having described the dependent 

variable, we now move to describe the results concerning the regression coefficients.  

 

SECTION 5: EMPIRICAL RESULTS 

We turn first to simple regression coefficients. Those simple regression coefficients are 

used in finance (Gregory-Allen and Shalit 1999; Shalit and Yitzhaki 2002), while a 

variation of them has been used for almost twenty years in analyzing the income 

elasticity of consumption goods (see the survey in Wodon and Yitzhaki 2002).   We 

have estimated the regression coefficients for all the years. Since they present a stable 

picture, only the results for the year 2001 are presented here.   

 

Table 3. Regression Coefficients of Household Weight on Gross Income per Household, 

by Gini Parameter (ν). 

ν  for Gross Income: 
Coefficient 3 2 1 -0.5 
b -0.0025* -0.0022* -0.0017* -0.0007*
SE(b) 0.0003 0.0003 0.0002 0.0001 
a (mean) 348.3 342.8 335.7 321.0 
a (median) 320.7 314.9 307.8 293.2 

NOTE: Source: HES 2001. 

* indicates a value significantly different than 0 (at α=0.05). 

  

Table 3 presents the regression coefficients of weight on household income, for different 

values of ν. The higher the parameter ν, the more the regression stresses the slopes of the 

regression curve at the lower end of the income distribution. (It is worth noting that those 

weights are solely determined by the distribution of the independent variable, and ν. 

They should not be confused with the dependent variable of the regression, which is the 

weight assigned to an observation). As can be seen, the regression coefficients are 

negative, which means that the higher the income - the lower the weight assigned to 

observations, implying that nonresponse declines with income. Even when high-income 

groups are stressed (ν = -0.5) we still have a significant negative regression coefficient. 

The interpretation of this finding is that we have a monotonic relationship between 

nonresponse and income. We have checked the pattern for the years 1997–2000 and 

found the same pattern. To save space the results are not presented.  

 The rest of Table 3 presents the two versions of the constant term. One presents 

the constant term when the regression line passes through the median while the other - 
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through the mean. It is interesting to note that the difference between the two is around 

28 with a(mean) higher than a(median). This is an indication that the error term tends to 

be asymmetric. It is not clear to us whether this kind of result, i.e. that the difference in 

the constant terms is independent of the slopes is a coincidence or it is a property of the 

extended Gini regression procedure. 

 Table 4 presents the simple regression coefficients of weight on household size. 

As in the regression on income, the larger the family size the higher the value of the 

regression coefficient, and in all cases, the signs of the regression coefficients are 

negative. This means that nonresponse is higher among small households. Note that as 

before, the constant term of the regression passing through the mean is larger than the 

constant term of the regression passing through the median, but again, the difference 

between the two constants is around 28.   

 

Table 4. Regression Coefficients of Household Weight on Household Size, by Gini Parameter 

(ν). 

ν  for Household Size: Coefficient 
3.0 2.0 1.0 -0.5 

b -12.2* -10.6* -8.5* -3.5* 
SE(b) 1.4 1.3 1.1 1.2 
a (mean) 354.1 347.5 339.3 321.4 
a (median) 326.7 320.0 311.1 293.2 

NOTE: Source: HES 2001. 

* indicates a value significantly different than 0 (at α=0.05). 

 

It’s interesting that although the differences in the regression coefficients are relatively 

large, the differences in the standard errors are relatively small. Further research and 

additional results from different data sets are needed to form an opinion regarding this 

issue.  

Table 5 presents the multiple regression coefficients, with gross income, 

household size and dummy variables for being a member of a minority group (Arabs, 

ultra religious Jews) as the independent variables. The parameter ν is set to 1 (symmetric 

around the median) for household size and minority groups (represented by dummy 

variables), and it varies for income only. As can be seen, the regression coefficients of 

weight on income decline in absolute value, as ν declines (i.e., stressing higher incomes), 

by up to 0.001, so that the patterns detected in the simple regression continue to hold. 

However, the sign of the regression coefficients of household size remains the same 
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(negative), indicating that larger households respond in greater proportion to the 

questionnaires. Since the only difference between the regressions is the change in the 

parameter of income, the decline in absolute value of the coefficient of household size 

should be attributed to a change in the pattern of association between income and 

household size. The higher the stress on high-income groups, the lower is the absolute 

value of the effect of household size on nonresponse. Also, the magnitude of the 

regression coefficient of household size has changed from (–8.5) in the simple regression 

case, to (–4.0), which may be an indicator of the magnitude of association between 

income and household size. Given income and household size, Arabs tend to respond in 

higher proportion than the majority group, but the more we stress high income, the lower 

the effect (this may be due to small sample size in the upper range of incomes). One 

possible interpretation is that the higher the income, the lower the difference in response 

rates between the majority group and Arabs. On the other hand, the effect of stressing 

high-income range on ultra religious Jews is the opposite. The more high incomes are 

stressed, the lower is the response rate. Since it is a group with a low response rate on 

average, and seems to be motivated by an ideology, it is reasonable to conclude that the 

difference in response rate between this group and the rest of the population increases 

with income. However, the high standard errors show that only when high income is 

stressed, the dummy for ultra religious Jews is significant.  As before, the difference 

between the constant terms is approximately 28.         

 

Table 5. Multiple Regression Coefficients of Household Weight (0) on Gross Income per 

Household (1), Household Size (2), and Ethnic Grouping Dummy Variables (3, 4) (**), 

by Gini Parameter (ν). 

ν  for Gross Income: Regression 
Coefficient 3.0 2.0 1.0 -0.5 

-0.0026* -0.0021* -0.0016* -0.0006* b01 
 (0.000) (0.000) (0.000) (0.000) 

-1.41 -2.54 -3.95* -6.32* b02 
 (1.44) (1.39) (1.35) (1.31) 

-40.8* -36.0* -30.1* -20.1* b03 
 (8.1) (8.0) (7.9) (7.8) 

18. 8 23.3 28.9 38.3* b04 
 (17.4) (17.2) (17.1) (16.9) 
a (mean) 357.9 354.6 350.5 343.6 
a (median) 330.2 326.6 322.6 316.1 

NOTE: Source: HES 2001. 
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* Indicates a value significantly different than 0 (α =0.05) 

** The Dummy variable No. 3 has the following values: 1=”Arab”, 0=”Other”; The Dummy 

variable No. 4 has the following values:  1=”Ultra religious Jew”, 0=”Other”. 

 

All in all we can conclude that given religion and household size, the lower the income 

the lower the response rate, and given income and congregation, the smaller the 

household, the lower the response rate. The indications of the simple descriptive 

statistics that Arabs tend to better respond than the majority, and ultra religious Jews 

respond less than the rest of the population remained intact.  

 

SECTION 6: THE EFFECT OF WEIGHTING ON MEAN INCOME AND 

INEQUALITY 

We turn now to answer directly the research question raised by Deaton’s (2003) 

conjecture concerning the impact of nonresponse on reported average income and on the 

measurement of poverty. Having found that there is a nonlinear systematic relationship 

between income and the response rate, one wonders whether this relationship can 

seriously bias measures of inequality like the Gini coefficient.   

Table 6 presents the weighted mean of income (and extended Gini’s) and the 

simple (nonweighted) mean of income (and extended Gini’s). Presumably, the former 

represent unbiased estimates of the population parameters, while the latter represent the 

biased estimates, due to nonresponse. As expected from the regression results, weighted 

mean incomes are lower than nonweighted, which means that nonresponse tends to 

increase average income by a magnitude of up to 10%. To verify this conclusion, Table 

7 presents the weighted and nonweighted mean incomes by the different demographic 

groups and household sizes.  In only two out of fifteen cases we get that nonweighted 

average income is lower than weighted average income, and in these cases the sample 

sizes and the differences are small.  

 The second and more complicated issue is the effect of nonresponse on 

inequality and poverty measures. First, one has to distinguish between absolute and 

relative poverty lines. If the poverty line is an absolute one, then we get a clear answer: 

an under representation of the number of poor people is in contrast to Deaton’s 

conjecture. On the other hand, if the poverty line is relative, or if we are concerned with 

the effect on inequality, then the direction of the bias is not clear, because nonresponse 

will affect both the numerator and the denominator of the inequality index.   
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Table 6. Mean Values and Extended Gini Coefficients of Gross Household Income. 

With Weighting Without Weighting 
ν of Gross Income ν of Gross Income Year N Mean 

Income 3.0 2.0 1.0 
Mean 
Income 3.0 2.0 1.0 

2001 5,787 14,110 0.62 0.55 0.42 14,758 0.61 0.55 0.42 
    (0.005) (0.005) (0.005)  (0.005) (0.005) (0.006) 
2000 5,864 13,273 0.61 0.54 0.41 13,978 0.61 0.54 0.40 
    (0.005) (0.005) (0.005)  (0.004) (0.004) (0.005) 
1999 5,816 12,837 0.62 0.55 0.41 13,300 0.61 0.54 0.41 
    (0.005) (0.005) (0.005)  (0.005) (0.005) (0.006) 
1998 5,772 11,336 0.61 0.54 0.41 12,383 0.61 0.54 0.40 
    (0.005) (0.005) (0.006)  (0.005) (0.005) (0.005) 
1997 5,561 10,724 0.62 0.55 0.41 11,494 0.61 0.53 0.40 
    (0.006) (0.006) (0.007)  (0.005) (0.005) (0.005) 

NOTE: The case ν= -0.5 is omitted because we are assuming inequality aversion. 

Source: HES 1997-2001, excluding the observations of East Jerusalem in 1997-1999.  

 

To see this, let us evaluate the effect on the Gini index of inequality. The Gini coefficient 

can be written as:  

                                                          
µ

F(Y))2COV(Y,G = , 

where Y is income, F(Y) is the cumulative distribution of income, and µ is mean income.  

We have already established that nonresponse tends to bias mean income upward, 

leading to a downward bias in inequality measurement. However, omitting an 

observation can increase or decrease the numerator. Lower participation rates by the 

poor may increase or decrease the numerator, depending on the shape of the distribution, 

while it will certainly increase the denominator.  By stochastic dominance 

considerations, it can be shown that omitting an observation of a poor person will shift 

the cumulative distribution to the right. Hence, higher nonresponse rates among the poor 

will increase the mean income and will also tend to increase social welfare indicators 

such as µ (1-G). (The explanation to this argument is that µ1 (1-G1)  > µ2 (1-G2) is a 

necessary condition for distribution 1 to dominate distribution 2 according to second 

degree stochastic dominance – see Yitzhaki 1982). This means that the bias in the mean 

imposes a constraint on the magnitude of the bias in the Gini coefficient. However, it 

does not impose a constraint on the direction of the bias.     

Instead of trying to solve the problem theoretically, we approach the question by 

comparing the effect of weighting on inequality. In any case, since nonresponse is not a 



 31

simple function of income, and it can affect the numerator in both directions, we cannot 

expect a clear theoretical answer.  

 The rest of Table 6 presents the extended Gini’s of gross income, with the case ν 

=1 being the simple Gini, which is the most relevant. In all years, the simple Gini 

inequality index calculated with weights is higher than the Gini index without weights. 

Hence, nonresponse tends to bias inequality downward. However, in three years (out of 

five) the effect is relatively small (less than one standard error), and in one year, 1997, 

the difference is about 3.5%, which is quite large.  Turning to the extended Gini, we see 

that in all cases the extended Gini, which relies on a weighted sample, is higher than the 

extended Gini based on the biased (nonweighted) sample. Hence, we may safely 

conclude that nonresponse tends to bias inequality downward.   

 

Table 7. Estimates of Sample and Population-Adjusted Means of Gross Income per 

Household, by Household Size and Ethnic Grouping. 

Household size 
Ethnic Group 

 
 1 2 3 4 5+ Total 
N 886 1,325 838 949 1,051 5,049 
Nonweighted Mean 7,136 12,613 17,471 19,477 20,943 15,482

Majority 
  
  Weighted Mean 6,846 12,447 16,929 18,934 20,027 14,762

N 20 64 74 116 388 662 
Nonweighted Mean 3,846 6,192 7,961 9,545 10,916 9,676 

Arabs 
  
  Weighted Mean 3,598 5,755 7,579 8,861 10,608 9,121 

N 3 16 4 8 45 76 
Nonweighted Mean 5,829 10,681 14,683 7,374 11,648 10,925

Ultra religious 
Jews 
  Weighted Mean 4,385 10,794 11,180 6,740 11,776 10,617

N 909 1,405 916 1,073 1,484 5,787 
Nonweighted Mean 7,060 12,299 16,690 18,313 18,040 14,758

Total 
  
  Weighted Mean 6,736 12,153 16,214 17,690 17,530 14,110

NOTE: Source: HES 2001. 

 

SECTION 7: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

RESEARCH 

This paper presents a descriptive method that enables the researcher to trace the 

curvature of the regression curve by changing the weights assigned to different sections 

of the distributions of the independent variables. One major advantage of the method is 

that the researcher can use a different weighting scheme for each independent variable.  

Although descriptive in nature, it can be turned into a standard analytical 

regression technique. By selecting the same weighting scheme for all independent 
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variables, one can have the structure of the OLS, with one simple modification: each 

variance is substituted by an extended Gini, and each Pearson’s correlation is substituted 

by two appropriate extended Gini correlations. The only difference is that the method 

offers an infinite number of alternative regression coefficients. Clearly, the method 

enables the investigator to verify whether the results are sensitive to the specific 

weighting scheme used.    

Turning to nonresponse, we have found that in the survey of household 

expenditure in Israel, nonresponse decreases with income, decreases with household 

size, and differs among ethnic groups. The Arab population tends to respond more than 

the majority, while the ultra religious Jewish population tends to respond less than the 

majority group. These results are in contrast with Deaton (2003) conjecture that high 

income groups tend to respond less to surveys. However, one should be aware that 

nonresponse is a survey-specific, not to mention the possibility of a country-specific 

phenomenon. Preliminary tests, which we conducted, have shown that the nonresponse 

in the income survey, which is a panel in the labor force survey, demonstrates a totally 

different response behavior. Also, additional variables may be relevant in explaining 

nonresponse behavior: schooling is a primary candidate. 

In its present form, the regression method does not offer estimates of partial 

derivatives of the regression curve, but it seems that one can overcome this deficiency. 

Yitzhaki (2002) shows that if one divides the range of an independent variable into two 

sections, then the Gini regression coefficient (and OLS) can be presented as a weighted 

average of the two within-section regression coefficients, and a between section 

regression coefficient. The weights are the relative contribution of each section to intra 

and inter group Gini (variance – in OLS) of the independent variable. This 

decomposition can be easily expanded to an arbitrary number of sections. Further 

research is needed to apply this additional decomposition to get a piece-wise linear 

approximation to the regression curve that is based on a between-section component and 

within-section components of the approximation to allow the estimate of the partial 

derivative to vary over sections of the independent variables.  

 



 33

APPENDIX: PROOF FOR CONVERGENCE 

This appendix shows that the difference between the two proposed estimators of  β is 

negligible, and hence, b has a limiting normal distribution (as was shown for bU). (The 

proof is limited to the case where ν is an integer). 

 The proof proceeds in two steps. In the first step, we express bN as a linear 

combination of concomitants of order statistics; in the second step we show that the 

difference between the coefficients of yx(i) , using the two presentations is negligible, for 

all i. 

 Let  θ = -(ν+1) COV(Y, [1-F(X)]ν) (see (15)) be the parameter of interest. As 

mentioned in (17), a U-statistic for estimating  θ is  

(Note that if  ν> (n-i),  then 








ν

i-n
 =0). 

Hence, the coefficient of YX(i)  is 

Using the semi-parametric approach, that is, replacing F by 
n

r(x) =Fn (the empirical cdf), 

the estimator of θ  (15) is given by 
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Hence, the coefficient of yx(i) is: 

 Note that: 

Using Rieman approximation, then 

implies that  

 

Using these bounds, the difference between the coefficients is  

Using the common denominator nν(n-1)...(n-ν), of order n2ν, it is easy to see that in the 

numerator, the highest power of n, which is 2ν-1, cancels out, so that the numerator will 

be of order n2ν-2. Therefore, the difference is O(n-2) while each coefficient is of order 1/n. 

This implies that √n (ai-bi) → 0 as n →∞, which completes the proof.      
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